世界杯最大比分

模型参数

网络内部神经网络层具有权重参数和偏置参数(如nn.Dense),这些参数会在训练过程中不断进行优化,可通过 model.parameters_and_names() 来获取参数名及对应的参数详情。

[12]:

print(f"Model structure: {model}\n\n")

for name, param in model.parameters_and_names():

print(f"Layer: {name}\nSize: {param.shape}\nValues : {param[:2]} \n")

Model structure: Network<

(flatten): Flatten<>

(dense_relu_sequential): SequentialCell<

(0): Dense

(1): ReLU<>

(2): Dense

(3): ReLU<>

(4): Dense

>

>

Layer: dense_relu_sequential.0.weight

Size: (512, 784)

Values : [[-0.01491369 0.00353318 -0.00694948 ... 0.01226766 -0.00014423

0.00544263]

[ 0.00212971 0.0019974 -0.00624789 ... -0.01214037 0.00118004

-0.01594325]]

Layer: dense_relu_sequential.0.bias

Size: (512,)

Values : [0. 0.]

Layer: dense_relu_sequential.2.weight

Size: (512, 512)

Values : [[ 0.00565423 0.00354313 0.00637383 ... -0.00352688 0.00262949

0.01157355]

[-0.01284141 0.00657666 -0.01217057 ... 0.00318963 0.00319115

-0.00186801]]

Layer: dense_relu_sequential.2.bias

Size: (512,)

Values : [0. 0.]

Layer: dense_relu_sequential.4.weight

Size: (10, 512)

Values : [[ 0.0087168 -0.00381866 -0.00865665 ... -0.00273731 -0.00391623

0.00612853]

[-0.00593031 0.0008721 -0.0060081 ... -0.00271535 -0.00850481

-0.00820513]]

Layer: dense_relu_sequential.4.bias

Size: (10,)

Values : [0. 0.]

更多内置神经网络层详见mindspore.nn API。